Создана новая геометрия

Математики из МГУ совместно с иностранными специалистами заложили основы нийенхейсовой геометрии - раздела математики, который тесно связан с интегрируемыми системами, алгеброй, дифференциальной геометрией и математической физикой. Работы (1 и 2), поддержанные грантом РНФ, можно найти на сайте arXiv.org, сейчас они готовятся к публикации в ведущих мировых математических журналах.

В основе современной физики лежит геометрия. Так, например, теория относительности Альберта Эйнштейна связана с псевдоримановой геометрией. В ней информация о геометрической структуре записывается в виде матрицы - заключенных в таблицу элементов объекта, который изучают математики. В такой таблице все элементы имеют два номера - номер строки, где он записан, и номер столбца.

Компоненты, то есть значения элементов таблицы, меняются от точки к точке. Если размерность пространства, например, три (длина, ширина и высота), то размер такой матрицы - три на три, то есть у нее девять параметров. На матрицу накладывается дополнительное условие - симметричность. Это значит, что элементы матрицы, симметричные относительно диагонали, одинаковы. А это, в свою очередь, значит, что количество параметров не девять, а шесть. Свою теорию относительности Альберт Эйнштейн формулировал именно в терминах псевдоримановой геометрии - это ее математический инструментарий. Он объединил пространство и время, получив четырехмерный объект, поэтому матрица у него имеет размер четыре на четыре. В свою очередь, уравнение Эйнштейна описывает гравитацию через компоненты матрицы. Именно его численно решают астрофизики, когда пытаются описать поведение физических объектов в окрестностях черных дыр.

Другая геометрия, которую используют в классической механике и частично в квантовой, называется пуассоновой. Она возникла сначала как инструмент в теории динамических систем. Сейчас ее используют, например, в теории деформационного квантования, за создание которой известный французский математик российского происхождения Максим Концевич получил премию Филдса и дважды премию Миллера (один раз - за физическую часть, другой - как раз за соответствующий математический инструментарий). Эта теория позволяет комплексно подходить к переходу от классической физики к квантовой. Сегодня в этом направлении множество вопросов, которые активно изучаются.

«В своих работах мы обратились к геометрии, где информация о структуре также содержится в матрице. Важное отличие в том, что это за матрица, - объясняет Андрей Коняев, кандидат физико-математических наук, доцент кафедры дифференциальной геометрии мехмата МГУ имени М. В. Ломоносова. - Традиционно матрицами в математике записывают три разных объекта - билинейная форма, 2-вектор и оператор. Матрицами их записывают потому, что эти объекты называются тензорами и правильно преобразуются при замене координат. В псевдоримановой геометрии фигурируют билинейная форма, в пуассоновой - 2-вектор, а в новой геометрии, которая получила название нийенхейсовой, речь про операторы».

Представьте себе обычную материю: кусочек скатерти или полотенце. Она состоит из переплетенных нитей. Часть нитей идет, условно, слева направо, а часть - сверху вниз. Если скатерть повидала виды, то на ней есть зацепки, стяжки. Двумерное пространство с оператором Нийенхейса представляет собой что-то похожее - через каждую точку протянуты нити. В этом смысле теорема о расщеплении говорит, как локально устроено плетение нашей «скатерти», а изучение особых точек (теорема о линеаризации) - какие бывают простейшие узелки и зацепки.

На матрицу в нийенхейсовой геометрии тоже наложены некоторые условия, которые были открыты Альбертом Нийенхейсом еще в 50-х годах прошлого века. Несмотря на то, что этот объект был в распоряжении математиков последние 60 лет, он рассматривался как некий вспомогательный инструмент для решения других задач.

Похожая ситуация была в 70-х годах прошлого века, до тех пор, пока нескольким математикам не удалось заложить фундамент пуассоновой геометрии. Этот фундамент - некоторый набор базовых теорем, которые раскрывают богатство структуры и демонстрируют потенциал для ее изучения.

Одним из таких ученых был Алан Вайнштейн. Ему удалось доказать так называемую теорему о расщеплении и заложить основы линеаризации - обе эти математические идеи позже превратились в целые направления.

«В новых работах удалось получить похожие по глубине результаты - теорему о расщеплении для операторов Нийенхейса - а также сформулировать и в некоторых случаях решить проблему линеаризации. В этих же работах мы продемонстрировали глубокие связи полученных результатов с другими областями математики и математической физики», - подводит итог Андрей Коняев.

Следите за официальными новостями СНГ в Telegram, подписывайтесь на наш канал по ссылке https://t.me/lentasng

Читайте также